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Direct numerical simulation of forced MHD
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By O L E G Z I K A N O V AND A N D R E T H E S S
Center for Physical Fluid Dynamics, Department of Mechanical Engineering,

Dresden University of Technology, D-01062 Dresden, Germany

(Received 23 May 1997 and in revised form 4 November 1997)

The transformation of initially isotropic turbulent flow of electrically conducting
incompressible viscous fluid under the influence of an imposed homogeneous magnetic
field is investigated using direct numerical simulation. Under the assumption of large
kinetic and small magnetic Reynolds numbers (magnetic Prandtl number Pm �
1) the quasi-static approximation is applied for the computation of the magnetic
field fluctuations. The flow is assumed to be homogeneous and contained in a
three-dimensional cubic box with periodic boundary conditions. Large-scale forcing
is applied to maintain a statistically steady level of the flow energy. It is found
that the pathway traversed by the flow transformation depends decisively on the
magnetic interaction parameter (Stuart number). If the magnetic interaction number
is small the flow remains three-dimensional and turbulent and no detectable deviation
from isotropy is observed. In the case of a strong magnetic field (large magnetic
interaction parameter) a rapid transformation to a purely two-dimensional steady state
is obtained in agreement with earlier analytical and numerical results for decaying
MHD turbulence. At intermediate values of the magnetic interaction parameter
the system exhibits intermittent behaviour, characterized by organized quasi-two-
dimensional evolution lasting several eddy-turnover times, which is interrupted by
strong three-dimensional turbulent bursts. This result implies that the conventional
picture of steady angular energy transfer in MHD turbulence must be refined. The
spatial structure of the steady two-dimensional final flow obtained in the case of
large magnetic interaction parameter is examined. It is found that due to the type of
forcing and boundary conditions applied, this state always occurs in the form of a
square periodic lattice of alternating vortices occupying the largest possible scale. The
stability of this flow to three-dimensional perturbations is analysed using the energy
stability method.

1. Introduction
The suppression of the motion of electrically conducting fluid by a static magnetic

field is a subject of increasing interest. In laboratory or industrial flows of liquid
metals, where the magnetic Reynolds number is normally very small, the effect of
the Lorentz force reduces to Joule dissipation damping three-dimensional motions.
The flow becomes essentially independent of the coordinate in the direction of the
magnetic field. This phenomenon is of importance for, e.g., construction of effective
liquid metal cooling blankets for fusion reactors or for optimization of processes of
semiconductor crystal growth or continuous casting of metals (magnetic braking).
Numerous applications are also possible connected with the magnetohydrodynamic
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control of electrically conducting fluid flows (Gelfgat, Lielausis & Shcherbinin 1975).
An example is the MHD drag reduction reviewed by Tsinober (1990).

Being the subject of theoretical (Moffatt 1967; Schumann 1976; Alemany et al.
1979; Sommeria & Moreau 1982; Hossain 1991; Davidson 1995, 1997) and numerous
experimental (Branover 1978; Votsish & Kolesnikov 1976a, b; Kolesnikov & Tsinober
1974; Alemany et al. 1979; Eckert 1997, and others) investigations, the evolution of
liquid metal turbulent flow in the presence of a static magnetic field is understood
to some extent. Joule dissipation is highly anisotropic. Only velocity modes with
non-zero gradient in the direction of the magnetic field B0 are dissipated. The rate
of dissipation is proportional to cos2 θ, where θ is the angle between B0 and the
wavenumber vector k. Velocity gradients in the direction of B0 are damped and
vortical structures are elongated in this direction. The process can also be described
as the propagation of momentum and vorticity along the magnetic field lines. The
flow becomes anisotropic, the energy being concentrated in the modes independent
of the coordinate in the direction of B0. This leads in turn to a decrease of total
Joule dissipation. The tendency to anisotropy is opposed by the nonlinear angular
energy transfer from modes perpendicular to B0 to the other modes which tends
to restore isotropy. The balance between Joule dissipation and nonlinear angular
energy transfer is decisive for the type of anisotropic flow developing. The ratio
between these two terms is estimated by the so-called magnetic interaction parameter
(or Stuart number) N. If N is large the flow can become two-dimensional in the
sense that the velocity field is independent of the coordinate parallel to B0. Both
magnetic dissipation and nonlinear angular transfer vanish as the flow approaches
this two-dimensional state.

MHD turbulent flows at higher magnetic Reynolds number, which find applications
in many astro- and geophysical problems, also demonstrate the development of
anisotropy under the action of an imposed constant magnetic field. Among the work
in this active area of study we mention that of Oughton, Priest & Matthaeus (1994)
where a numerical simulation of decaying MHD turbulence at unit magnetic Prandtl
number was performed. A comparison between our results and those of Oughton et
al. is provided in the concluding section.

One additional remark is necessary concerning the possible comparison of turbulent
flow at small magnetic Reynolds number and turbulent flows in stratified and rotating
systems (see e.g. Staquet & Sommeria 1996 and Cambon, Mansour & Godeferd 1997
for a review and Hossain 1991, 1994 for demonstration of the similar effect of rotation
and magnetic field on homogeneous turbulence). Both stratification and rotation can
lead to anisotropy and transition to slow large-scale two-dimensional flow, as a
magnetic field does, but the mechanism of the process is fundamentally different. In
flows with rotation and stratification disturbances propagate as internal waves and
kinetic energy does not change. By contrast, Lorentz force is dissipative, it does destroy
kinetic energy of the flow and disturbances are propagated via pseudo-diffusion along
magnetic field lines.

It was also shown in previous works that the effect of rigid walls with specific MHD
boundary layers is very important. In particular, insulating boundaries normal to the
magnetic field introduce the so-called Hartmann effect. It manifests itself as change
of mean velocity profile and the formation of thin Hartmann layers at the walls. It is
obvious that in such a configuration the flow cannot become purely two-dimensional.
In this paper we consider the simplest (and numerically tractable) problem of locally
homogeneous flow in a periodic three-dimensional box. It allows us to neglect the
influence of walls and focus on the ‘pure’ process of MHD suppression of turbulence.
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A work closely related to the present investigation is the experimental study
by Alemany et al. (1979), where the decay of turbulent motion of mercury in a
homogeneous magnetic field was investigated. The turbulence was generated by a
grid moving in a channel. Magnetic field lines were directed along the channel walls.
Observations provided a t−1.7 law for decay of the flow energy and a k−3 kinetic
energy spectrum. A theoretical explanation based on the balance between Joule
dissipation and nonlinear angular energy transfer (and not on the transition to two-
dimensionality) was provided. Tsinober (1990) proposed another experimental setup
in which the effect of rigid walls is strongly reduced. The flow through a channel with
annular cross-section is subjected to a magnetic field in the azimuthal direction. The
walls normal to magnetic field and, correspondingly, Hartmann layers are absent in
such a configuration.

Suppression of homogeneous turbulence by a magnetic field was treated analytically
by Moffatt (1967), Sommeria & Moreau (1982), and Davidson (1995, 1997). Moffatt
investigated the case of a strong magnetic field (magnetic interaction parameter
N � 1) and neglected nonlinear energy transfer. It was shown that the flow becomes
rapidly two-dimensional (in the sense that velocity is independent of the coordinate
in the direction of the magnetic field). At the same time, the energy of the parallel
velocity component grows.

Sommeria & Moreau (1982) considered the process of elongation of large-scale
vortical structures along the magnetic field. They attributed it to the process of
electromagnetic diffusion of vorticity along the magnetic field lines. The effect of
Hartmann boundary layers at the insulating walls perpendicular to the magnetic
field was also considered. In the limits N � 1, Re � 1 conditions on the typical
perpendicular length l⊥ of a vortex were proposed for the flow to be dynamically
two-dimensional.

In the work of Davidson (1995, 1997) the basic idea was that the component H‖ of
global angular momentum parallel to the magnetic field is not affected by the Lorentz
force. If mechanical forces do not act on H‖ and viscous dissipation is neglected, it
can be rigorously demonstrated that H‖ is a conserved quantity that imposes strong
constraints on the evolution of the flow. In particular, the kinetic energy E cannot
then be fully destroyed. Elongation of the flow structures along the magnetic field
lines leads to a continuous decay of Joule dissipation, and the flow eventually takes
a two-dimensional form not affected by the magnetic field.

Although it has been studied extensively theoretically and experimentally, the
problem of MHD turbulence at low magnetic Reynolds number has received only
limited numerical treatment. Among the few existing works we mention those by
Shimomura (1991), Cueves, Ramos & Picologlou (1996) and Cuevas et al. (1997a, b),
where channel flow with a transverse magnetic field was considered, and by Schumann
(1976) and Hossain (1991). The last two papers are of most interest for us since
homogeneous turbulent flow in a periodic box was studied. Decaying turbulence (in
the work of Schumann) and turbulence forced in the wavenumber band 10 6 k2 > 13
(Hossain) were the subjects of direct numerical simulation with the resolution 323.
In spite of the low resolution and small Reynolds numbers stemming from the low
computational power available at the time, certain of the results of Schumann and
Hossain are confirmed by our calculations.

The aim of the present work is to understand the long-time evolution of initially
isotropic homogeneous forced turbulent flow under the influence of imposed homo-
geneous magnetic field. Parameters of the problem and governing equations are given
in the next section. Numerical experiments performed and computational method are



302 O. Zikanov and A. Thess

described in §3. Results of the calculations are given in § §4, 5 and 6, and a short
discussion is provided in §7.

2. Governing equations
We consider the turbulent motion of an electrically conducting incompressible

viscous fluid (e.g. liquid metal). The flow is assumed to be homogeneous and contained
in a cubic box of side length 2π with periodic boundary conditions. We assume also
that there can be a uniform magnetic field B0 imposed in vertical direction.

Let the root-mean-square velocity be u, integral length scale be L, and magnetic
diffusivity be η (η = (σµ0)

−1, σ is the electrical conductivity and µ0 is the magnetic
permeability). The dimensionless parameter

Rem ≡ uL/η
is known as the magnetic Reynolds number. We suppose that

Rem � 1,

while the hydrodynamic Reynolds number

Re ≡ uL/ν � 1.

This assumption is valid for most laboratory and technical flows of liquid metals
since the magnetic Prandtl number

Pm ≡ ν/η = Rem/Re

is usually very small (∼ 10−5 for sodium and ∼ 10−7 for mercury).
If the magnetic Reynolds number is small (in other words the magnetic diffusion

time is much smaller than other time scales), the fluctuations b of the magnetic
field B0 + b due to fluid motion are much smaller than the applied magnetic field.
Moreover, the fluctuation b, which determines the induced electric current

j = µ−1
0 ∇× b

and the Lorentz force

F = j × (B0 + b) ≈ µ−1
0 (∇× b)× B0,

adjusts instantaneously to the time-dependence of the velocity. As a result (see e.g.
Roberts 1967; Moreau 1990), the quasi-static approximation

η∆b+ (B0 · ∇)u = 0, ∇ · b = 0

can be used instead of the full magnetic field equation to compute the Lorentz force.
After elimination of current density and inclusion of the potential part of the Lorentz
force in a modified pressure term, the electromagnetic effect reduces to an anisotropic
Joule dissipation. The equations of motion are then

∂

∂t
u(x, t) + (u · ∇)u = −1

ρ
∇p+ ν∆u+ F [u], (2.1)

∇ · u = 0, (2.2)

where the rotational part of Lorentz force is a linear functional of the velocity

F [u] = −σB
2
0

ρ
∆−1 ∂

2u

∂z2
. (2.3)
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In (2.3), ∆−1 is an inverse of the Laplacian operator and the z-coordinate is directed
parallel to the magnetic field. The Fourier transform of (2.3) is

F̂ [û] = −σ
ρ

(B0 · k)2

k2
û(k, t) = −σB

2
0

ρ
cos2 θû(k, t), (2.4)

where û(k, t) is the Fourier transform of velocity field, and θ the angle between
the wavenumber vector k and the imposed magnetic field B0. Applying the Fourier
transform to (2.1) and (2.2) and rot2 operator to (2.1) we obtain the governing
equations in Fourier space as

∂

∂t
û(k, t) = − 1

k2
[k × (k × q̂(k, t))]−

[
ν +

σ

ρ

(B0 · k)2

k4

]
k2û(k, t), (2.5)

k · û = 0, (2.6)

where q̂ is the Fourier transform of nonlinear interaction term.
It can be easily seen in (2.5), (2.6) that the additional Joule dissipation produced

by the magnetic field is a dissipation of a special kind which leads to the inap-
plicability of standard Kolmogorov phenomenology to MHD turbulence. First, the
Joule dissipation acts equally at all scales of the flow, whereas viscous dissipation is
proportional to k2 and its direct effect is important at small scales only. Therefore,
phenomenology based on the energy supply at large scales, energy dissipation at small
scales, and the inertial range in between is no longer applicable. Second, the Joule
dissipation is anisotropic. It depends on the angle θ between the wavenumber vector
k and the magnetic field B0. The dissipation is maximum for modes with k ‖ B0 and
zero for modes with k ⊥ B0. The magnetic field tends to eliminate velocity gradients
in the direction of B0 and, thus, to lengthen turbulent eddies in this direction. The
characteristic time of this process, the so-called Joule time, is

τJ ≡ ρ/σB2
0 . (2.7)

The Joule damping leads to a kinematically two-dimensional state, where velocity
depends only on the coordinates in the plane perpendicular to B0. This tendency
to two-dimensionality is opposed by the nonlinear interaction that tends to restore
isotropy of the flow. Energy is transferred continually from the modes with k ⊥ B0

to the other modes. It is to be noted that, as the flow structure approaches a
two-dimensional state, this nonlinear energy transfer as well as the total magnetic
dissipation decrease because of the reduction of the energy in modes dependent on
the vertical coordinate. The ratio of the Joule to the nonlinear term is the so-called
magnetic interaction parameter (or Stuart number)

N ≡ σB0
2L/ρu.

This parameter can be also defined as the ratio of large-eddy turnover time

τtu ≡ L/u (2.8)

to Joule time (2.7).
A final comment is in order on the assumption of small magnetic Reynolds

number. The quasi-static approximation leading to the simplified Lorentz force (2.3)
constitutes the first-order theory that is obtained from a systematic expansion of
the general magnetic field equation in powers of the magnetic Reynolds number.
At this order of approximation Alfvén waves, an important characteristic of many
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astrophysical MHD problems, exist only in their degenerate form as pseudo-diffusion
along magnetic field lines (Davidson 1995). If the theory were extended to second
order, the Alfvén waves would reveal their oscillatory character – an approach that
is beyond the scope of the present paper.

3. Numerical experiments
Equations (2.5) and (2.6) are solved in a three-dimensional cubic box of side 2π

with periodic boundary conditions to investigate the response of an initially isotropic
turbulence to the sudden application of a magnetic field. Different values of the Stuart
number N are used.

During the calculations, the flow is forced in the following manner. After each
time step the energy E< contained in Fourier modes with k < 2.5 is evaluated. Then,
all such modes are multiplied by c = (E<

0 /E
<)1/2, where E<

0 is a prescribed value.
The coefficient c is always slightly larger than 1 which allows viscous and magnetic
dissipations to be compensated. By this means the energy of modes with k < 2.5 is
held at a constant level E<

0 which is chosen to be 0.75 in all runs.
This forcing was chosen since it does not introduce any artificial isotropy or

anisotropy into the flow. In particular, the forcing does not prevent the system
from attaining a purely two-dimensional state. Energy supply is distributed over
largest-scale modes in proportion to the instantaneous values of the energy in these
modes. In the case of MHD flows, the role of forcing seems to be more important
than for ordinary turbulence. Indeed, the energy supply scales are also subject to
Joule dissipation. The influence of the type of forcing on the flow structure is not
investigated in detail here.

A standard pseudospectral technique based on the fast Fourier transform is em-
ployed. The resolution is 1283 and 643. The aliasing errors are not removed, which
allows the cost of calculations to be reduced by a factor about 2. (For a discussion
of the importance of aliasing errors in pseudospectral methods see Orszag 1972.) The
time-stepping technique includes a second-order leap-frog scheme for the nonlinear
term and an exponential solution for the linear terms. To suppress the oscillatory
instability inherent in leap-frog methods, the solutions at two subsequent time layers
are averaged every 20th time step.

As an initial condition we use the isotropic velocity field calculated with the lower
resolution 323. During the first (6 for 1283 and 11 for 643) turnover times τtu (defined
with the values of u and L at the end of this period), the magnetic field is absent. This
allows us to obtain a developed turbulent flow with a good degree of isotropy. Then,
at the moment t = t0, the magnetic field is switched on and remains constant till the
end of calculations. During this period the value of σB2

0/ρ is set to N0u(t0)/L(t0),
where N0 is a prescribed initial magnetic interaction parameter N0 = N(t0).

The kinematic viscosity ν is chosen to be 0.0054 at resolution 1283 and 0.008 453
at resolution 643. This implies, respectively, ReL ≈ 190 and ≈ 128 for isotropic flow
at t = t0. It is commonly accepted (see e.g. Jimenez et al. 1993) that the necessary
condition for an appropriate resolution of small scales of isotropic turbulent flow can
be formulated as Kmaxη > 1, where Kmax = 64 (32) is the maximum wavenumber
and η = (ν3/ε)1/4 is the Kolmogorov dissipation scale. The criterion is satisfied in our
calculations. At t = t0, Kmaxη is about 1.59 for resolution 1283 and about 1.13 for
resolution 643. In the presence of a magnetic field at t > t0 the coefficient Kmaxη is
never less than the values above.
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During the numerical runs, the following integral characteristics are calculated as
indicators of the transformation of flow structure under the influence of the magnetic
field.

(i) Total energies

Ei =
1

2

∫ ∞
0

u2
i (k)dk, i = 1, 2, 3 (3.1)

contained in ith velocity components.
(ii) Integral scales in each direction

Li =
π

2Ei
Ei(0), i = 1, 2, 3, (3.2)

where Ei(ki) is the one-dimensional longitudinal spectrum of the velocity component
ui, and Ei in the denominator is defined by (3.1). In isotropic flow all the scales Li
must be equal to the integral length

L =
π

2u2

∫ ∞
0

k−1E(k)dk

defined by the three-dimensional spectrum E(k) (Hinze 1959).
(iii) Total viscous (ε) and magnetic (µ) dissipations calculated according to

ε = 2ν

∫ ∞
0

k2E(k)dk, µ =
σ

ρ

∑
i

∫
k

(B0 · k)2

k2
ûi(k) · ûi(−k)dk.

(iv) Taylor microscale λ = (15νu2/ε)1/2 and Kolmogorov dissipation length η =
(ν3/ε)1/4.

(v) Parallel, transverse, and Taylor-scale Reynolds numbers

Re‖ =
u‖L‖

ν
, Re⊥ =

u⊥L⊥

ν
, Reλ =

uλ

ν
, (3.3)

where L‖ = L3, L⊥ = (L1 + L2)/2 are parallel and transverse integral scales and

u‖ = E
1/2
3 , u⊥ = (E

1/2
1 + E

1/2
2 )/2 are mean velocities in the parallel and transverse

directions, respectively.
(vi) Parallel and transverse magnetic interaction parameters

N‖ =
σB2

0

ρ

L‖

u‖
, N⊥ =

σB2
0

ρ

L⊥

u⊥
. (3.4)

(vii) To check the degree of anisotropy we calculate the normalized mean-square
velocity gradients in the direction of B0

G1 =
〈(∂u2/∂z)

2〉
2〈(∂u2/∂y)2〉 , G2 =

2〈(∂u3/∂z)
2〉

〈(∂u3/∂y)2〉 . (3.5)

Both coefficients are equal to unity in isotropic turbulence and decrease to zero under
the influence of a magnetic field in the z-direction.

(viii) Following Schumann (1976) we calculate the skewness coefficients

Si =
1

35
(15ν/ε)3/2

∫
k

Γ̂ ii(k)k2dk, (3.6)

where

Γ̂ ij(k) = q̂i(k)ûj(−k) + q̂j(−k)ûi(k)
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is the tensor of nonlinear inertial energy transfer. In a purely two-dimensional state
without forcing the integral enstrophy transfer∑

i

∫
k

Γ̂ ii(k)k2dk (3.7)

must be zero, implying zero skewness S =
∑

i Si. Therefore, in his calculations of
decaying MHD turbulence, Schumann (1976) used S as an indicator for the proximity
to two-dimensionality. In the case of forced flow, the skewness S can be different from
zero even in a purely two-dimensional state. Nevertheless, the coefficient S is used in
our calculations with the same meaning as in the calculations of Schumann since, as
is shown below, the two-dimensional state developing under the impact of a strong
magnetic field is laminar and S = 0 always.

In addition to the integral characteristics, the two-dimensional energy spectra E(k, θ)
and µ(k, θ) are calculated. Here E(k, θ) and µ(k, θ) stand for the energy and magnetic
dissipation in modes with |k| = k and angle between k and B0 equal to θ.

To visualize the spatial structure of the flow three- and two-dimensional pictures
of vorticity and velocity fields are used below.

4. Large magnetic interaction parameter
In this section, results of the calculations with a strong magnetic field, i.e. with

magnetic interaction parameter N � 1 are presented. Numerical resolution is 1283

and viscosity ν is equal to 0.0054. At t < t0 the flow without the magnetic field is
calculated. This allows us to obtain a developed isotropic turbulent velocity field. At
t = t0 the homogeneous magnetic field with lines parallel to the z-axis is switched
on. The value of σB2

0/ρ is set to 10u(t0)/L(t0), so that the initial magnetic interaction
parameter is N0 = 10. In this case the characteristic time τJ of Joule dissipation is ten
times smaller than the largest eddy turnover time τtu.

4.1. Integral characteristics

Figures 1–4 show the evolution of integral characteristics of the flow. In all the
figures hereafter, time is scaled by the Joule time τJ , and the moment t0, at which the
magnetic field is switched on, is set to zero.

The anisotropy coefficients G1 and G2 given by (3.5) are presented in figure 1. In
the absence of magnetic field, at t < t0, they are close to unity, and the maximum
deviation |Gi − 1| does not exceed 6%. This indicates a good degree of isotropy
of the flow (see also figure 2a, b). In the presence of a magnetic field, G1 and G2

decrease very fast, implying a rapid transformation of the flow into two-dimensional
form. One can see in figure 1 that two stages can be isolated in the process of flow
transformation. During the first one, lasting from t0 to approximately t0+5τJ , the
decrease of G1 and G2 is extremely rapid. This stage can be considered as dominated
by the magnetic dissipation which is very strong (see figure 4b and discussion below).
Magnetic dissipation continually falls due to the decrease of the energy in modes
subject to dissipation. The second stage begins at t ≈ τtu and lasts till the end of
calculations. During this stage, the flow energy is concentrated in modes perpendicular
to the magnetic field and the decrease of G1 and G2 is much slower.

Integral length scales Li and the Taylor microscale λ are shown in figure 2(a). At
t < t0 the scales in different directions are approximately equal which serves as one
more confirmation of the isotropy of the flow. After introducing the magnetic field,
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Figure 1. Development of anisotropy in three-dimensional MHD flow at high magnetic interaction
parameter N0 = 10: normalized mean-square velocity gradients G1 (——) and G2 (– – –) (see (3.5))
are shown as functions of time. Scaled time (t− t0)/τJ is used hereafter in all figures.
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Figure 2. Evolution of integral characteristics of the flow at N0 = 10 (a) Length scales: — —
and − · − · −, transverse integral length scales L1 and L2; ——, parallel integral length scale L3;
- - - -, Taylor microscale λ. (b) Total energies of velocity components perpendicular E1 (— —),
E2 (− · − · −), and parallel E3 (——) to the magnetic field. The ratio 2E3/(E1 + E2) between the
amplitudes of parallel and transverse motions is also shown.

the parallel scale L3 begins to grow, the growth rate being very fast during the first
stage of magnetic damping introduced above. At t > 5τJ the growth rate falls. By
t = 50τJ L3 has nearly reached its maximum possible value L3 = π. This implies that
the flow energy is almost entirely confined to the modes with k3 = 0 (cf. (3.2)), i.e. to
modes perpendicular to the magnetic field.

For the transverse scales L1 and L2 one cannot see the initial stage of fast variation.
The scales change slowly, the characteristic time being of the order of several turnover
times. The curves for L1 and L2 demonstrate large instantaneous differences implying
a considerable large-scale anisotropy of the flow in a transverse plane. As will be
shown below this difference between L1 and L2 is a result of the formation of large
vortical structures in the flow.

Figure 2(b) presents the time dependence of energies Ei of different velocity com-
ponents. One can see that, during the first few Joule times after the application of the
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Figure 4. Integral characteristics of the flow at N0 = 10. (a) Skewness coefficients (3.6): ——,
parallel coefficient (S3); — — — (− · − · − ), transverse coefficients S1 (S2). (b) Total viscous (ε
denoted as ——) and magnetic (µ denoted as — —) dissipation.

magnetic field, the amplitudes of all velocity components decrease. At that time, the
ratio 2E3/(E1 +E2) grows. This is in accordance with decay calculations of Schumann
(1976) and the linear approximation of Moffatt (1967). The last fact points to the
quasi-linear type of evolution at this first stage dominated by the magnetic dissipation.

At the second stage of flow evolution, at t > t0 + 10τJ , the energy of fluid motion
in the direction of the magnetic field falls constantly, whereas the total energy of
transverse motions remains at a constant level. The behaviour of transverse velocity
components u1 and u2 is similar to that of transverse length scales. The energies E1

and E2 oscillate slowly, the oscillations being correlated with the oscillations of L1

and L2. Clearly, the reason for both types of oscillations should be the same.
Parallel, transverse, and Taylor-scale Reynolds numbers defined by (3.3) and parallel

and transverse Stuart numbers are shown as functions of time in figures 3(a) and 3(b),
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respectively. One can see that the values of Reynolds numbers change considerably
according to the change of length scales and amplitudes of velocity components. The
same is true of the time dependence of parallel and transverse Stuart numbers. The
Stuart numbers are proportional to actual parallel and transverse eddy turnover times
which can be defined as τtu‖ = L‖/u‖ and τtu⊥ = L⊥/u⊥, respectively (see (3.4)). τtu‖
and τtu⊥ increase with time following the growth of length scales and decrease of the
energies of velocity components. Below, we show that this process is associated with
the development of large-scale spatial structures in the flow.

The skewness coefficients Si given by (3.6) are presented in figure 4(a). At t < t0, the
Si have approximately equal statistically steady values. After introducing the magnetic
field, the transverse coefficients S1 and S2 fall quickly and, at large time, oscillate near
the origin in such a way that their sum is zero. On the other hand, the skewness
coefficient in the direction of the magnetic field S3 grows after the introduction of
the magnetic field. During the first few turnover times S3 compensates the decrease
of transverse coefficients so that total skewness S changes only slightly. Then, S3

decreases slowly, but remains finite till the end of calculations.
Similar behaviour was observed in low-resolution short-time simulations of freely

decaying MHD turbulence by Schumann (1976). For non-forced two-dimensional
turbulence the skewness S must be zero. Therefore, Schumann considered transverse
coefficients S1 and S2 as behaving in accordance with two-dimensionalization of the
flow. On the other hand, the behaviour of S3 was named anomalous.

In our case of forced flow, S can be non-zero even in purely two-dimensional flow.
But the integral enstrophy transfer (3.7) and, respectively, S must be zero in a laminar
steady flow occupying the largest scale only. Such a state is shown below to be a final
state of the flow in the presense of strong magnetic field. Therefore, we can consider
S as a measure for the proximity of the flow to this final state.

The total viscous and magnetic dissipation are shown in figure 4(b). Just after the
application of the magnetic field, when the flow is isotropic, magnetic dissipation is
very strong. During the first several Joule times µ is larger than ε. As the process of
magnetic damping proceeds, µ decreases rapidly and, at t ≈ 13τJ , becomes smaller
than the total viscous dissipation ε. At large times, when the flow approaches a two-
dimensional state, the magnetic dissipation decreases almost exponentially. Another
interesting feature, seen in figure 4(b), is the rapid decrease of viscous dissipation ε
during the first stage of magnetic damping. As discussed below, this can be explained
by the development of large-scale quasi-two-dimensional structures and corresponding
formation of a steeper energy spectrum of the flow.

Two-dimensional energy distributions E(k, θ) over wavenumber k = |k| and angle
θ between B0 and k were calculated using snapshots of the velocity field. The results
are partly shown in figure 5(a–d). Figure 5(a) presents energy spectra E(k) obtained
by integration of E(k, θ) over θ ∈ [0, π/2]. It can be seen that under the influence of
the magnetic field the spectrum E(k) becomes steeper. This tendency is in qualitative
agreement with theories of purely two-dimensional turbulence predicting a E ∼ k−3

power law (Kraichnan 1967). However, one should be wary of drawing quantitative
conclusions from the late-time spectra of figure 5(a), since our two-dimensional flow
does not represent fully developed two-dimensional turbulence comparable with that
obtained in purely two-dimensional high-resolution simulations (see e.g. Borue 1993).
The energy spectrum transformation provides an explanation for the decrease of
viscous dissipation demonstrated in figure 4(b). Indeed, one can see that the magnetic
field reduces the energy in small-scale modes which are the main participants in the
process of viscous dissipation.
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Figure 5. Temporal evolution of the flow spectra at high magnetic interaction parameter N0 = 10:
——, t = t0; - - - -, t = t0 + 10τJ ; − · − · −, t = t0 + 35τJ ; — —, t = t0 + 205τJ . (a) Energy
spectrum E(k). (b) Compensated energy spectrum C(k) = E(k)kα; α = 5/3 at t = t0 and α = 3

at t = t0 + 205τJ . (c) Angular energy distribution Φ(θ) =
∫ θ

0
E(λ)dλ, where E(λ) is the angular

spectrum of flow energy. (d) The ratio of Joule dissipation to flow energy µ(k)/E(k) as a function
of wavenumber k.

An attempt to find a power-law approximation of energy spectra is presented in
figure 5(b). Spectra of the isotropic flow at t = t0 and the quasi-two-dimensional flow
at t = t0 + 205τJ are compensated by k5/3 and k3 respectively. Our resolution is too
poor to allow any reliable conclusions. At least, for 4 < k < 12, power-law ranges
can be seen for both the curves. For quasi-two-dimensional flow, the scaling exponent
is clearly smaller than −3 which is typical of the large-scale vortices developed in
the flow to this time (see below). Such a scaling was not detected in the earlier
simulation of forced homogeneous turbulence in the presence of strong magnetic field
performed by Hossain (1991). Instead, the spectrum E(k) ∼ k−3 was found at high
k in the flow nearing a kinematically two-dimensional state. The discrepancy can
be related to the forcing at 10 6 k2 6 13 used in the work of Hossain which does
not allow the structures of largest scale to develop in the flow. The difference in the
wavenumber band at which forcing is applied seems to be also responsible for the
fact that the inverse energy cascade at small k found by Hossain was not detected in
our calculations.
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Alemany et al. (1979) also measured k−3 energy spectra of decaying MHD tur-
bulence but argued that this scaling as well as the t−2 law for energy decay is due
to establishing a quasi-steady equilibrium between Joule dissipation and nonlinear
transfer in an anisotropic three-dimensional flow.

Figure 5(c) shows the angular energy spectra for different moments of time. Instead
of the angular distribution

E(θ) =

∫ ∞
0

E(k, θ)dk

we use the integral

Φ(θ) =

∫ θ

0

E(λ)dλ,

which gives the total energy of all modes contained in the cone of axis B0 and semi-
angle θ. The jumps of curves in figure 5(c) are due to the finite numerical resolution.
A jump occurs when a large-scale energetic mode is taken into account for the first
time. In an isotropic flow the distribution of energy over θ is homogeneous and Φ(θ)
must be a linear function of θ (cf. the curve for t = t0 in figure 5c), while in purely
two-dimensional flow the spectrum is Φ = Eδ(θ − π/2). The magnetic field damps
quickly all modes except those with wavenumber vectors in the plane perpendicular
to B0. At t = t0 + 205τJ , the energy in modes out of this plane constitutes less than
10−9 of the total energy. The flow takes a kinematically quasi-two-dimensional form
in which the velocity field is virtually independent of z.

Two-dimensional spectra µ(k, θ) of Joule dissipation were also computed. To show
distributions of µ over length scales we use the wavenumber spectra obtained by
integration over θ. The ratio µ(k)/E(k) is shown in figure 5(d) for different t. It can
be easily shown (see e.g. Schumann 1976) that in the isotropic case one must have
µ(k)/E(k) = 2/3τ−1

J = const. The curve for t = t0 in figure 5(d) agrees well with this
condition. The root-mean-square value of µ(k)/E(k)τJ is equal to 0.6446 ≈ 2/3.

Transformation of the velocity field into a kinematically two-dimensional state
reduces the total magnetic dissipation but does not strongly change its distribution
over k. One can see in figure 5(d) that except for forced modes at smallest k and
modes at largest k subject to viscous dissipation, the ratio µ(k)/E(k) remains only
weakly dependent on k. This is valid also at large t when the flow takes essentially
a kinematically two-dimensional form. We can state that in the inertial range the
relative intensity of Joule dissipation does not depend on the length scale. In other
words, the level of anisotropy is approximately equal at all scales in this range.

4.2. Spatial structure of the flow

In this section we look at the evolution of the spatial structure of the flow under
the influence of the magnetic field. Three- and two-dimensional plots of vorticity and
velocity fields are employed.

The development of the vorticity field during one turnover time after the introduc-
tion of the magnetic field is illustrated in figure 6. Vorticity vectors are calculated at
all nodal points using fast Fourier transform. Following previous studies of isotropic
turbulence at moderate Reynolds number (Vincent & Meneguzzi 1991; Jimenez et
al. 1993) the regions of vorticity with amplitude above a certain limit are plotted: in
figure 6 we draw all vectors w satisfying the condition |w| > 3wmean, where wmean is a
root-mean-square vorticity amplitude.

In isotropic flow at t = t0 one can see the well-known pattern of localized turbulent
structures. Davidson (1997) proposed a description of turbulent decay at large N
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Figure 6. Snapshots of vorticity fields at the initial stage t 6 t0 + τtu of the flow evolution at high
magnetic interaction parameter N0 = 10: vectors w with |w| > 3wmean are plotted. Only the part
π/2 < x < 3π/2, π/2 < y < 3π/2, 0 < z < 2π of computational box is shown for better resolution.

based on his studies of the evolution of isolated axisymmetric vortices. According
to Davidson, vortices parallel to B0 elongate in the direction of B0 and form long
thin columnar vortex tubes. Vortices transverse to B0 disintegrate into patterns of
sheets oriented along the magnetic field lines. Then, the evolution of the essentially
two-dimensional flow is determined by the slow quasi-two-dimensional interaction of
sheets and tubes.

Our calculations show that this qualitative picture is true for the evolution of large-
scale structures at later stages of flow transformation (see below). The key feature
of the initial stage t 6 t0 + τtu is a merging of small turbulent vortices into large
vortical structures. This is seen in figure 6 and is confirmed by the modification of
the energy spectrum E(k) in figure 5(a) and by the drop of total viscous dissipation
in figure 4(b). The process of merging is accompanied by rapid growth of anisotropy.
The anisotropy is difficult to see in the early velocity fields shown in figure 6. Vortex
blobs do not appear strongly elongated in the direction of B0 even at t = t0 + 10τJ .
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Figure 7. Snapshot of vorticity fields at t = t0 + 35τJ and N0 = 10: vorticity vectors w with
|w| > 2.5wmean are shown.

But the change of angular distribution of flow energy (see figure 5c), decrease of mean
velocity gradients G1 and G2 in figure 1, and rapid growth of the parallel length scale
L3 in figure 2(a) demonstrate the development of considerable anisotropy of the flow.

The further evolution of the flow can be described as follows. The velocity field
becomes virtually independent of z. The typical vertical length scale takes its maximum
possible value (cf. figure 2a) and flow structures extend in the vertical direction over
the whole computational box. The flow dynamics is defined by quasi-two-dimensional
evolution of the large-scale structures. An example is given in figure 7. One can see
that the vorticity field is constituted by large vortex sheets having vertical scale equal
to the box side and transverse scale approximately two times smaller. Now we can
explain the slow oscillations of transverse integral length scales L1 and L2 shown
in figure 2(a). The oscillations are associated with the rotation of vortex sheets. At
t = t0 + 35τJ , the sheets are mainly oriented along the y-axis and, correspondingly, L2

is large and L1 is small at this time. At t = t0 + 105τJ , the vortex sheets are oriented
more along the x-axis (see figure 8) and, correspondingly, the ratio between L1 and
L2 is reversed. The vertical gradients are almost negligible at t = t0 + 105τJ and we
use in figure 8 the projection of vorticity field on the (x, y)-plane.

One can note in figure 7 that the component of vorticity in the direction of
the magnetic field does not dominate. To check this we calculated the maxima of
vorticity components at different moments of time (see figure 9). For a long time
(corresponding to the existence of vortex sheets) the vertical component w3 is of the
same order of magnitude as the transverse components w1 and w2. This implies that
particle trajectories are helical rather than purely circular structures. As a consequence,
mass transport parallel to the magnetic field may well persist even at high values of
the magnetic interaction parameter.

We also plotted velocity fields of the flow dominated by vortex sheets. The con-
clusion is that the sheets are located exactly in the regions with largest horizontal
gradients of vertical velocity component. At moderate times, this component is of the
same order of magnitude as the transverse components (cf. figure 2b).

The decrease of vertical velocity with time is accompanied by instability and rolling
up of vortex sheets. This results in the development of new large-scale vortical
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structures – vortex columns with strong vertical vorticity. An illustration is given in
figure 8. Vortex columns and sheets coexist for a rather long time, columns becoming
more and more pronounced. Accordingly, vertical velocity and transverse vorticity
components fall with time, whereas transverse velocity and vertical vorticity remain
approximately constant. By the time t = t0 + 205τJ , which is the final point of
our three-dimensional calculations, the maximum w3 is three times larger than the
maximum w1 and w2.

The final flow obtained in three-dimensional calculations is presented in figure 10.
We plot the projection (u1, u2)(x, y) of the velocity field on the plane z = π. Filled
contours of the absolute value of vertical vorticity component |w3| in the same plane
are also given. One can see that vortex sheets are not seen any more. Instead, two
large vertical counter-rotating vortices define the flow dynamics. The flow pattern
is strikingly similar to that obtained in earlier calculations by Hossain (1991). The
development of two quasi-two-dimensional large-scale vortices seems to be a natural
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Figure 10. Final state of forced MHD turbulence obtained in three-dimensional calculations with
high magnetic interaction parameter N0 = 10: flow structure at t = t0 + 205τJ is shown using
projection (u1, u2)(x, y) of velocity field on the plane z = π and filled contours of absolute value of
vertical vorticity component |w3| with |w| > 2wmean.

response of the system to the applied strong magnetic field consistent with boundary
conditions and forcing (see also the discussion in the next section).

4.3. Final two-dimensional state

Calculations with large magnetic interaction parameter discussed above show a rapid
transformation of an initially isotropic three-dimensional flow into a kinematically
quasi-two-dimensional form. Here we understand two-dimensionality in the sense that
the velocity does not depend on the coordinate in the direction of the magnetic field.
The mean velocity gradients G1 and G2 go exponentially to zero (figure 1). The flow
energy is concentrated in the Fourier modes with wavenumber vectors normal to
the lines of magnetic field (figure 5c). In accordance, the total magnetic dissipation
vanishes (figure 4b). The flow takes the form of two large columnar vortices, their
inherent instability being obviously suppressed by the Lorentz force.

A natural question arises in connection with these results. How close is the flow
obtained in three-dimensional calculations to true two-dimensional flow? Note that
our idealized formulation does not forbid purely two-dimensional states.

To be more precise we reformulate the question in the following manner:
(i) To what accuracy can the flow at large time be described by two-dimensional

Navier–Stokes equations?
(ii) Is there a final steady state? If yes, is this state an exact solution of two-

dimensional equations?
To answer the questions we performed a simple numerical experiment. The nu-

merical code was adapted to the purely two-dimensional case when all variables are
independent of the coordinate z in the direction of the magnetic field. In this case the
Lorentz force drops out. Viscosity ν, numerical resolution, and forcing remained the
same as in three-dimensional calculations. As an initial condition we used the velocity
field obtained at t = t0 + 75τJ , i.e. when the flow is kinematically two-dimensional
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Figure 11. Two-dimensional calculations. (a) Total energies of velocity components perpendicular
E1 (— —), E2 (− · − · −), and parallel E3 (——) to the magnetic field versus time. (b) Skewness
coefficients (3.6) versus time: ——, parallel coefficient (S3); — — — (−·−·− ), transverse coefficients
S1 (S2).

with a good degree of approximation. All the Fourier modes except those with the
wavenumber vectors normal to the magnetic field were cut off.

A comparison between two-dimensional and three-dimensional calculations has
revealed that the computed characteristics of the flow (length scales, amplitudes of
velocity components, skewness coefficients, etc.) coincide with good accuracy till the
final point t = t0 + 205τJ of the three-dimensional run. Thus, we can state that the
solution obtained at late stages of three-dimensional calculations can be reproduced
by a purely two-dimensional numerical code. Inevitable angular energy transfer
is counterbalanced by Joule dissipation. At large magnetic interaction parameter
N0 = 10, this competition leads to almost absolute cancellation of all non-two-
dimensional processes and the flow dynamics is well described by the two-dimensional
Navier–Stokes equations.

In an attempt to find a final steady state we produced two-dimensional solutions
beyond the point t = t0 + 205τJ . Flow evolution is rather slow in this case. It is
determined by the development of two counter-rotating vortices shown in figure 10.
As an illustration, figure 11(a, b) presents total energies Ei and skewness coefficients Si
(i = 1, 2, 3) as functions of time. One can see that after approximately t = t0 + 500τJ ,
the skewness coefficient S3 goes to zero implying the vanishing integral enstrophy
transfer inherent in two-dimensional laminar flows.

It can be seen in figure 11(a) that at t → ∞ amplitudes of velocity components
approach definite limiting values. We performed computations till t = t0 + 12500τJ
and found that after t ≈ t0 + 8000τJ velocity field did not change anymore. The
energy concentrates in the modes of largest scale and the final steady flow has the
strikingly simple form of Kolmogorov-like square cellular flow (see e.g. Meshalkin &
Sinai 1961; Gotoh & Yamada 1986):

u = b sin y, v = a sin x, w = c cos x− bc/a cos y, (4.1)

where

a = 1.2131, b = 1.2020, c = 0.20239.

When writing (4.1) we used the spatial periodicity of the flow and made shifts in
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(x, y)-space to eliminate constant phases. Amplitudes of the Fourier modes other than
(4.1) decrease continually and are smaller than 10−6 at t = t0 + 12500τJ .

Now we can give a positive answer to question (ii) above. The steady final state
exists and it is purely two-dimensional. One can easily check that (4.1) is an exact
solution of the two-dimensional Navier–Stokes equations with our forcing at any a,
b, and c. The only condition to be satisfied is

a2 + b2 + c2(1 + b2/a2) = 4E0,

where E0 is the total energy in the large-scale modes prescribed by the forcing. In
additional calculations with resolution 643 and 323 and magnetic interaction number
N0 = 0.5, 0.815, and 0.85 the final steady two-dimensional solutions of the kind (4.1)
were always obtained. The specific values of constants a, b, and c, however, were
found to depend on the parameters of the problem and initial conditions.

It is obvious that the evolution into a laminar steady flow is conditioned by
the value of the Reynolds number, boundary conditions, and forcing used in this
study. It is likely that a state of two-dimensional turbulence with irregular spatio-
temporal dynamics would be attained if the simulations were performed at higher
Re or excitations with wavelength larger than 2π were allowed. The special form
(4.1) of final laminar flow is very similar to vortical final states of freely decaying
two-dimensional turbulence predicted by the selective decay, ‘sinh-Poisson’ equation,
or maximum entropy theories (see e.g. Matthaeus et al. 1991; Montgomery et al. 1992;
Robert & Sommeria 1991). In the case of periodic boundary conditions an initially
irregular turbulent two-dimensional flow was found to relax to the coherent structure
of two counter-rotating vortices with nearly circular cross-section located in such a
way as to maximize their separation distance. The flow (4.1) obviously belongs to this
class of solutions. However, when assuming the relevance of the theories mentioned
above to our results one should be aware that the selective decay process implies
freely decaying turbulence and an inverse energy cascade to largest scales, whereas
our calculations are for forced flow and an inverse cascade was not detected. The
observation of such coherent structures in our simulations is probably due to the fact
that the dissipation (and forcing) are weak in the two-dimensional state, and the flow
is dominating by inertia.

Our calculations are performed for a highly idealized system and we can only
suppose that the results reflect some general properties of real MHD flows. There are
experimental indications (for a review see e.g. Tsinober 1990) that a magnetic field
leads to a quasi-two-dimensional flow and reduces strongly the intensity of turbulent
fluctuations. It was observed that in such flows the velocity component parallel to the
magnetic field is far from being zero. This phenomenon is well reproduced by our
calculations. In the case N0 = 10, a finite albeit small value of c was obtained. In
another run, with N0 = 0.85 and resolution 323, the parallel velocity component was
larger than the transverse ones.

The presence of fluid motion in the direction of the magnetic field becomes
especially interesting if we consider the problem of passive scalar transfer. This
problem can be of interest if one deals, for example, with Rayleigh–Bénard convection
under an external magnetic field. This type of convection appears in astro- and
geophysical systems. The limit of low magnetic Reynolds number employed here is
applicable to such flows if one considers the motions at small scales. Clearly non-zero
velocity in the direction of the magnetic field is of importance in this case since it can
transfer heat even when all velocity fluctuations are suppressed.
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4.4. Stability analysis

Calculations with low magnetic interaction number discussed in the next section
confirm the intuitively obvious fact that Kolmogorov cellular flow (4.1) presents an
attractor only in a certain part of (N,Re)-plane. Outside this region, the flow remains
three-dimensional and chaotic. In an attempt to find the boundary of the basin of this
attractor we performed the stability analysis. The linear and energy stability of (4.1)
to three-dimensional perturbations in the presence of a magnetic field were examined.
The procedure is given in detail in the Appendix. Now we discuss the formulation
and results briefly.

We consider (4.1) as a basic flow maintained by the forcing and look for the
critical Reynolds number Rec(N) such that at Re < Rec or Re > Rec the flow is
correspondingly stable or unstable in the sense of linear or energy stability. The
Reynolds and Stuart numbers should be defined with typical length and velocity
scales of flow (4.1) which are

u = (2/3E0)
1/2, L = π

for any set of a, b, and c. These scales differ strongly from the scales u(t0), L(t0)
used for the definition of Re and N in the full calculations (the consequences are
seen in figure 3a, b). To allow comparisons of stability limits and the results of
three-dimensional runs we will use reciprocal viscosity ν−1 and reciprocal Joule time
τ−1
J = B2

0σ/ρ instead of Re and N.
The solution (4.1) includes a whole family of flows with different a, b, and c. Well-

known members of the family are the classical Kolmogorov flow a 6= 0, b = c = 0
(see e.g. Meshalkin & Sinai 1961) and square cellular flow a = b 6= 0, c = 0 (Gotoh &
Yamada 1986; Thess 1992). Since we are interested in the most stable solutions the
critical parameter ν−1 should be maximized over a, b, and c.

Meshalkin & Sinai (1961) have shown in their pioneering paper that Kolmogorov
flow is most unstable to infinitely long-wave perturbations. Later, this kind of wave
was shown to be most dangerous for other periodic cellular flows. Our aim here is
not to examine the stability of (4.1) itself but to understand the results of three-
dimensional runs where the maximum allowed wavelength is 2π. Therefore, when
solving stability problem, we restrict our consideration to perturbations compatible
with periodic boundary conditions, that is to the perturbations with integer wavenum-
ber ki. Moreover, since the transition between two-dimensional and three-dimensional
states is of interest for us, only three-dimensional perturbations are considered.

It is shown in the Appendix that linear stability analysis does not explain the results
of nonlinear calculations. The one-dimensional basic solutions (4.1) with b = 0 are
linearly stable at any values of τ−1

J and ν−1 to perturbations with integer wavenumbers.
The main results of energy stability calculations are presented in figure 12. At zero
magnetic field the stability limit is ν−1 = 3.825, the most stable configuration of the
basic flow being that with u = v = 0, w = (2E0)

1/2(cos x + cos y). The magnetic field
acts as a source of additional dissipation of the perturbations. In accordance, the
critical ν−1 grows with τ−1

J . At τ−1
J > 0.5, the one-dimensional basic flow with b = 0

becomes most stable. One can see in figure 12 that the energy stability threshold grows
significantly with the strength of the magnetic field. At large τ−1

J the dependence is
approximately linear.

The energy stability curve is compared in figure 12 with the results of full three-
dimensional calculations. In the (τ−1

J , ν
−1)-plane we denote the points where the

transition from isotropic turbulent flow to (4.1) is observed and the points where the
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Figure 12. Results of energy stability calculations. ——, Limit of energy stability of cellular flow
(4.1) to three-dimensional perturbations as a function of τ−1

J = B2
0σ/ρ. Stability limits are maximized

over constants a, b, and c of the basic flow. 5 (�) denote the points where transition from isotropic
turbulent flow to cellular flow (4.1) was observed (was not observed) in full three-dimensional
calculations. Symbol � denotes the point where intermittent three-/two-dimensional behaviour was
detected (see §6).

flow remains three-dimensional and turbulent. Also, as discussed in §6, one run gives
a kind of intermittent two/three-dimensional behaviour. One can see that suppression
of three-dimensional fluctuations and transition to Kolmogorov flow (4.1) occur at
much smaller τ−1

J (much larger ν−1) than required by the energy stability theory.

5. Small magnetic interaction parameter
In this section we discuss the transformation of an initially isotropic turbulent flow

under the impact of weak magnetic fields. The run was performed with magnetic
interaction parameter N(t0) = 0.1. Such a small value of N0 implies a large typical
time τJ of Joule dissipation and, correspondingly, slow mean evolution of the flow.
A long-time run is required to see this evolution. The current level of computational
power does not allow such a run to be performed with 128 trial functions in each
direction as for the case N0 = 10. Therefore, calculations were carried out with lower
resolution 643. The kinematic viscosity ν was set to 0.08453. This corresponds to a
Reynolds number at t = t0 equal to 128.

Integral characteristics of the flow are shown as functions of time in figure 13(a,
b). As before, time is scaled by the Joule dissipation time τJ and the moment t0 of
application of the magnetic field is set to zero. It must be noted that the time unit in
figure 13(a, b) is much larger than in figures 1–4. It is now 10 eddy turnover times τtu.

Among the computed integral characteristics, normalized mean-square velocity
gradients G1 and G2 (figure 13a) and energies Ei of velocity components (figure 13b)
are chosen to be shown. One can not see any change of statistical behaviour of these
quantities with time. The mean values and levels of fluctuations remain approximately
the same. Similar pictures were observed for other integral characteristics of the flow,
such as length scales Li, skewness coefficients Si, and total viscous and magnetic
dissipations ε, and µ. The energy spectra E(k) are virtually unchanged in the presence
of a weak magnetic field in comparison with the non-magnetic case. We can conclude
that the transformation of the flow into the laminar two-dimensional form described
in the previous section does not occur at such a small N. The flow remains turbulent
and three-dimensional. As an illustration, figure 14 shows the structure of the vorticity
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Figure 13. Evolution of integral characteristics of the flow at low magnetic interaction parameter
N0 = 0.1 (cf. figures 1 and 2b for comparison with the strongly anisotropic case). (a) Normalized
mean-square velocity gradients G1 (——) and G2 (– – –) (see (3.5)). (b) Total energies of velocity
components E1 (— —), E2 (− · − · −), and E3 (——).
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Figure 14. Snapshot of vorticity fields at t = t0 + 42τJ as an example of the flow structure at low
magnetic interaction parameter N0 = 0.1. Vorticity vectors w with |w| > 2.5wmean are shown.

field at t = t0 + 42τJ . A pattern of localized vortical structures typical of ordinary
Navier–Stokes turbulence can be seen.

An important question to be discussed concerns the possible deviation of the flow
structure from isotropy. Here we can consider isotropy only in a statistical sense
because of permanent chaotic deviations from this state due to the fluctuations of
energy-containing modes. The anisotropy coefficients G1 and G2 in figure 13(a) seem
to have mean values smaller than 1. To quantify this deviation we calculated root-
mean-squares of G1 and G2 at t0 + 5τJ < t < t0 + 42τJ and obtained 0.984 for G1

and 0.952 for G2. Also, the total magnetic dissipation µ remains at the statistically
constant level, whereas µ must fall if an angular redistribution of energy occurs. We
can conclude that deviation from isotropy, if present, is very small. The flow remains
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Figure 15. Temporal evolution of flow spectra at low magnetic interaction parameter N0 = 0.1 (cf.
figure 5c, d): ——, t = t0; - - - -, t = t0 + 11.2τJ ; − · − · −, t = t0 + 26.6τJ ; — —, t = t0 + 42τJ . (a)

Angular energy distribution Φ(θ) =
∫ θ

0
E(λ)dλ, where E(λ) is the angular spectrum of flow energy.

(b) The ratio of Joule dissipation to flow energy µ(k)/E(k) as a function of wavenumber k.

approximately isotropic. This conclusion is confirmed by the angular energy spectra
presented in figure 15(a). Curves for t > t0 are very close to the curve at t = t0
corresponding to the initial quasi-isotropic state. (Note the linear scale of the y-axis
as opposed to the logarithmic scale in figure 5c.)

The scale distribution of the ratio of magnetic dissipation to energy is shown
in figure 15(b) for different t. It has already been noted that an isotropic flow
satisfies the condition µ(k)/E(k) = 2/3τ−1

J = const. One can see in figure 15(b)
that the magnetic field does not influence the spectrum of Joule dissipation. Ex-
cept for about 10% fluctuations the ratio µ(k)/E(k) is independent of k. This
phenomenon was also observed in the case of large magnetic interaction number
(see figure 5d). The peculiarity of the case of a weak magnetic field is that the
spectrum is practically independent of time. The root-mean-square of µ(k)/E(k)τJ
was calculated to be equal 0.6623 at t = t0, 0.622 at t = t0 + 11.2τJ , 0.6604 at
t = t0 + 26.6τJ , and 0.6428 at t = t0 + 42τJ . All the values are close to 2/3 cor-
responding to isotropic flow. Thus, we can consider the spectra in figure 15(b)
as one more demonstration of retention of (at least approximate) isotropy of the
flow.

6. Intermediate magnetic interaction parameter
We have shown above that the flow evolution depends strongly on the magnetic

interaction parameter. At large N rapid irreversible transition into purely two-
dimensional, laminar, steady flow occurs. On the other hand, if N is small, the
flow remains three-dimensional, turbulent, and isotropic. Below we demonstrate the
possibility of the third kind of evolution, namely an intermittent behaviour.

To this end, a run with an intermediate initial value of the magnetic interaction
parameter N(t0) = 0.4 was performed. We used the same numerical resolution 643,
kinematic viscosity ν = 0.08453, initial Reynolds number Re(t0) = 128, and velocity
field at t = t0 as in the case of a weak magnetic field discussed in the previous section.
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Figure 16. Temporal evolution of anisotropy of the intermittent solution at intermediate magnetic
interaction parameter N0 = 0.4: normalized mean-square velocity gradients G1 (——) and G2 (– – –)
(cf. figures 1 and 13a for comparison with the cases of high and low magnetic interaction parameters).
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Figure 17. Evolution of the integral characteristics of the flow at intermediate magnetic interaction
parameter N0 = 0.4 (cf. figures 2a, b and 13b). (a) Length scales of the flow. — — and − · − · −,
transverse integral length scales L1 and L2; ——, parallel integral length scale L3. (b) Total energies
of velocity components E1 (— —), E2 (− · − · −), and E3 (——).

Integral characteristics of the flow are shown in figures 16–18. One can see that
they present a typical example of temporal intermittency. Turbulent bursts alternate
with periods of quasi-laminar, quasi-two-dimensional behaviour.

The sequence of flow transformations at t > t0 is the following. After the period
of initial development (which is not short since the time unit is now 2.5τtu) the flow
undergoes a transition similar to the transition observed at N0 = 10. The anisotropy
coefficients G1 and G2 decrease rapidly, indicating that the flow is getting highly
anisotropic. Integral length scales Li grow and reach their maximum possible value
π hinting at the formation of large-scale structures. The energy E3 of the vertical
velocity component falls to a small but non-zero value. At that time, the transverse
velocity components reduce strongly the amplitude of their fluctuations and stabilize
at an approximately constant level.

By the analogy with the case N0 = 10, all these processes suggest the beginning of
transition to a large-scale, quasi-two-dimensional, quasi-laminar flow. The evolution of
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Figure 18. Integral characteristics of the flow at N0 = 0.4 (cf. figure 4a, b). (a) Skewness coefficients
(3.6). ——, parallel coefficient (S3); — — — (− · − · −), transverse coefficients S1 (S2). (b) Total
viscous (ε denoted as ——) and magnetic (µ denoted as — —) dissipation.

skewness coefficients shown in figure 18(a) confirms this assumption. The coefficients
Si fall rapidly and, then, oscillate slightly in such a way that their sum is approximately
zero. One more confirmation is in figure 18(b) where the total viscous and magnetic
dissipations are given. Viscous dissipation decreases to a value which is about ten
times smaller than the initial one and, after that, remains constant for a long time.
As will be shown below such a behaviour is due to the process of merging the small-
scale vortices into large vortical structures and corresponding change of the energy
spectrum. The drastic decrease of magnetic dissipation can be explained only by
two-dimensionalization of the flow. The last fact is confirmed by the angular energy
spectrum below.

The large-scale, quasi-two-dimensional structures developed at the initial stage
under the impact of the magnetic field are obviously unstable. What is more, this
instability cannot be suppressed by magnetic dissipation. One can see in figures 16–18
that after a certain time, the restoration of three-dimensional turbulent flow occurs.
All integral characteristics return to the behaviour typical of the flow without or
with a very weak magnetic field. After that, growing magnetic dissipation leads to the
repetition of the process of two-dimensionalization and laminarization.

Visualized flow structures typical of different stages of the intermittent flow evolu-
tion are shown in figures 19–21. Vorticity vectors w with the amplitude |w| > 2.5wmean
are drawn in the whole computational box. Figure 19 presents an example of quasi-
two-dimensional flow corresponding to ‘laminar’ periods. One can see that the vor-
ticity field strongly resembles the field found in the case N0 = 10 as a final state (cf.
figure 10). Two large counter-rotating columnar vortices determine the flow structure.
The vertical vorticity component is dominating, its mean amplitude being six times
larger than that of the transverse vorticity components. There is a distinction of the
flow in figure 19 from that in figure 10. In the former vortices are twisted. This is ob-
viously the result of inherent instability which cannot be suppressed by the magnetic
field at N0 = 0.4.

One can see in figure 20 that the instability causes the disintegration of columnar
vortices and the formation of vortex structures of a smaller scale. These structures, in
turn, break down. After several tens of eddy turnover times τtu, the evolution results
in the restoration of three-dimensional highly turbulent flow. An example is given
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Figure 19. An example of quasi-two-dimensional, quasi-laminar structure of temporarily intermit-
tent flow at N0 = 0.4: snapshot of vorticity fields at t = t0 + 92τJ is shown. Vorticity vectors w with
|w| > 2.5wmean are plotted.
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Figure 20. Breakdown of the flow in figure 19: vorticity vectors w with |w| > 2.5wmean are shown
at t = t0 + 110τJ and N0 = 0.4.

in figure 21. The vorticity field consists now of the small-scale structures typical of
isotropic turbulence. It can be seen in figures 16–18 that this flow pattern corresponds
to intense fluctuations of integral characteristics and the restoration of isotropy.

Wavenumber and angular spectra of flow energy are presented in figure 22(a, b).
The spectra corresponding to the flow structure in figure 19 are typical of quasi-two-
dimensional, large-scale, quasi-laminar flow. The wavenumber spectrum E(k) is much
steeper than the isotropic one, explaining the sharp decrease of viscous dissipation
in figure 18(b). The angular spectrum Φ(θ) reveals a high degree of anisotropy of
the flow. The total energy contained in the modes with wavenumber vectors out of



MHD turbulence at low magnetic Reynolds number 325

B

y

x

z

6

4

2

0

2

6

4

6
4

2
0

Figure 21. An example of three-dimensional turbulent structure of temporarily intermittent flow
at N0 = 0.4: vorticity vectors w with |w| > 2.5wmean at t = t0 + 134τJ are plotted.
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Figure 22. Temporal evolution of flow spectra at intermediate magnetic interaction parameter
N0 = 0.4 (cf. figures 5a, 5c and 15a for comparison with the cases of large and small N0): ——,
t = t0; - - - -, t = t0 + 92τJ ; − · − · −, t = t0 + 110τJ ; — —, t = t0 + 134τJ . (a) Energy spectrum

E(k). (b) Angular energy distribution Φ(θ) =
∫ θ

0
E(λ)dλ, where E(λ) is the angular spectrum of flow

energy.

the plane perpendicular to the magnetic field is less than 2 × 10−3. This angular
redistribution of energy is clearly responsible for the decrease of magnetic dissipation.

On the other hand, spectra corresponding to the flow in figure 21 demonstrate a
high degree of restoration of isotropic small-scale turbulence as shown in figure 22.
Both wavenumber and angular spectra differ only slightly from those for the initial
state at t = t0.

The flow characteristics in figures 16–18 demonstrate the temporal behaviour
which is reminiscent of classical intermittency in dynamical systems with few degrees
of freedom. Unfortunately, a detailed analysis of the time series using tools from
dynamical system theory was not possible due to their limited length.



326 O. Zikanov and A. Thess

The example of the intermittent solution discussed in this section seems to point
to the necessity of refinement of the conventional picture of MHD turbulence at
an intermediate interaction parameter. This picture is mostly due to Alemany et
al. (1979). They performed an experimental study of decaying MHD turbulence
under a longitudinal external magnetic field at moderate interaction parameters
and Reynolds numbers of an order of magnitude larger than in our calculations.
The energy spectrum E(k) ∼ t−2k−3 found in experiments was explained by the
establishment of a quasi-steady equilibrium between the nonlinear angular energy
transfer and the Joule dissipation. This equilibrium was supposed to hold over the
whole wavenumber range. This explanation can be extended to the k−3 energy spectra
measured in duct flows, the latter case being obviously more close to our calculations
with forcing.

The picture outlined above implies that a flow with a statistically steady level of
anisotropy which is, however, far from being two-dimensional can develop in the case
when the magnetic field is not strong enough to create quasi-two-dimensional state.
Our calculations demonstrate the possibility of another scenario in this case. The flow
has a strongly intermittent history consisting of the transitions between quasi-two-
dimensional, quasi-laminar and quasi-isotropic turbulent states. This result does not
exclude the existence of statistically steady anisotropic regimes characterized by the
balance between Joule dissipation and nonlinear energy transfer. Such states can be
found at smaller N, larger Re or, what seems to be more probable, in calculations
with another type of forcing.

7. Concluding remarks
We have studied forced homogeneous turbulence in an electrically conducting

fluid subject to a uniform magnetic field. The utilization of the so-called quasi-
static approximation, appropriate for low magnetic Reynolds numbers, results in a
conceptually simple model which differs from the usual Navier–Stokes equation only
by the presence of an additional anisotropic Joule dissipation term and which can be
efficiently implemented using pseudospectral techniques.

The present work seems to be one of the first to implement the direct numerical
simulation of the long-time evolution of MHD turbulence at low magnetic Reynolds
number. Of the previous studies only those of Schumann (1976) and Hossain (1991)
are relevant. The difference between our calculations and those of Schumann is that
we performed long-run simulations of forced flow at intermediate Reynolds number,
whereas Schumann calculated decaying turbulence at smaller Reynolds number using
short-time runs with low numerical resolution. Apart from some distinctions due to
a different forcing scheme, our calculations with strong magnetic field agree well with
the results of Hossain. A novelty of our study is that the Reynolds number is higher
and the cases of weak and moderate magnetic field are considered.

The main result of the present work consists of a detailed quantitative character-
ization of statistically steady MHD turbulence at Rm � 1. In particular, simulations
provide unambiguous evidence for the existence of three characteristic types of MHD
turbulence corresponding to low, intermediate and high magnetic interaction param-
eter, respectively.

In the case N � 1, corresponding to a weak magnetic field, we find that the
behaviour of MHD turbulence does not significangly differ from ordinary (non-
magnetic) turbulence. This result provides a firm justification for the neglect of Joule
dissipation in applications involving low magnetic interaction parameter such as
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electromagnetic boundary layer control in low-conductivity fluids like sea water (see
e.g. Tsinober 1990).

The regime of moderate magnetic field is found to be characterized by a delicate
interplay between long-lasting periods of quasi-two-dimensional dynamics and erratic
three-dimensional turbulent bursts with a high degree of isotropy. This strongly in-
termittent behaviour, although being clearly the result of the competition between
Joule dissipation and nonlinear energy transfer, is not fully understood yet and is
well worth further detailed investigation. In particular, the role of large-scale forcing
in the formation of this regime should be carefully studied. The existence of the
intermittent regime also has some interesting consequences for the practical question
of magnetic damping of turbulence, relevant in various metallurgical applications.
Figures 16–22 provide a vivid illustration of the fact that the intuitive picture of the
damping influence of a magnetic field may sometimes be misleading. Although the
overall damping effect of the magnetic field by Joule dissipation is present, it does
not necessarily guarantee a velocity field whose temporal behaviour is smoother than
in the non-magnetic case. As a consequence, caution must be exercised when making
predictions about the magnetic damping of turbulence in systems with N ∼ 1.

In the case of a strong magnetic field (large magnetic interaction parameter) the
flow rapidly becomes two-dimensional. Its evolution at late stages is reproduced
by the two-dimensional Navier–Stokes equations independent of the coordinate in
the direction of the magnetic field. At t → ∞ the solution approaches the purely
two-dimensional steady state having the form of cellular Kolmogorov flow. This
specific form is certainly due to the boundary conditions and forcing employed in the
calculations. We can only assume that these our results model some general properties
of real MHD flows. To be consistent with the highly idealized formulation considered
in this paper and allow purely two-dimensional flows the experimental setup must
include only rigid walls parallel to the magnetic field. Such a setup was proposed by
Tsinober (1990). It involves the flow through a channel with annular cross-section
and a uniform magnetic field in the azimuthal direction.

Although our numerical resources are insufficient to obtain a regime of two-
dimensional turbulence, the simulations permit us to draw a qualitative picture of
the behaviour that would be expected if the N � 1 calculations were performed
with much higher Reynolds number. It is clear that the large-scale structures with
scale ` would have a two-dimentional turbulent behaviour as long as the magnetic
interaction parameter calculated for the typical eddy of size ` obeys N` � 1. As soon
as the size of the structure has diminished such that N` ∼ 1 the eddies would undergo
erratic local three-dimensional bursts, similar to the events shown in figures 16–18 in
which the energy could then cascade down to the Kolmogorov scale according to the
picture of homogeneous turbulence.

It is important to know the limits of validity of the quasi-static approximation. In
order to assess them let us consider the full equation

∂tb+ (u · ∇)b− (b · ∇)u− η∆b = (B0 · ∇)u (7.1)

for the magnetic field perturbation. The quasi-static approximation is obtained by
dropping the first three terms on the left-hand side. It may appear at first glance that
the approximation breaks down once the Joule dissipation has acted long enough to
damp significantly the parallel gradients in u and, thereby, to reduce the right-hand
side of equation (7.1). One could suppose that in this case the terms (u · ∇)b and (b · ∇)u
become of the same order of magnitude as the right-hand-side term and cannot be
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neglected. The simple qualitative answer is that according to the quasi-static solution

b = η−1∆−1(B0 · ∇)u = η−1B0∆
−1∂‖u (7.2)

(where ∂‖ stands for the gradient in the direction of the magnetic field) the fluctu-
ations b decrease in proportion to the decrease of the typical parallel gradient ∂‖u.
Therefore, the ratios

(u · ∇)b

(B0 · ∇)u
and

(b · ∇)u

(B0 · ∇)u

retain the same order of magnitude as the flow develops towards the quasi-two-
dimensional state.

If a two-dimensional state is achieved, the right-hand side being zero, equation
(7.1) always has the unique asymptotic solution b = 0 no matter whether the terms
(u · ∇)b and (b · ∇)u are neglected or not. This is due to the fact that two-dimensional
motion cannot support dynamo action (Moffatt 1978).

For general three-dimensional velocity fields the quasi-static approximation breaks
down when the magnetic Reynolds number becomes sufficiently large to allow a
dynamo effect. This can happen even for the flow departuring only slightly from two-
dimensionality. In this case the linear operator on the left-hand side of equation (7.1)
will possess exponentially growing solutions which, after sufficiently long time, will
supplant the quasi-static solution (7.2). Such behaviour was observed by Weisshaar
(1988) for Pm = 1. In the present case, however, such behaviour is excluded by the
assumption Rem � 1. The value of the critical magnetic Reynolds number can be
made more precise for each specific geometry using methods analogous to energy
stability theory.

From the practical viewpoint it should be noted that the validity of the quasi-static
approximation on the laboratory and industrial scales derives from the fact that
dynamo action is irrelevant in these cases.

The forcing used in the present work involves some degree of ambiguity. It would
therefore be interesting to remove this deficiency while keeping the convenient frame-
work of homogeneous turbulence. This could for instance be done by adding a
temperature field and buoyancy force so that the flow would then be forced by
the natural mechanism of Rayleigh–Bénard instability rather than artificially. (For a
study of effect of an external magnetic field on Rayleigh–Bénard convection see e.g.
Meneguzzi et al. 1987.)

The problem of Rayleigh–Bénard convection in the presence of a magnetic field can
also be of interest for the understanding of astro- and geophysical systems including
buoyancy as well as Lorentz forces. The quasi-static approximation based on the limit
of low magnetic Reynolds number is not applicable to such systems. However, if one
studies the motions at small scales, the local magnetic Reynolds number can be consid-
ered as a small parameter and our results are valid at this scale, at least qualitatively.
Evidence for this can be found, e.g., in direct numerical simulations of decaying MHD
turbulence by Oughton et al. (1994), where the full MHD equations including the
non-steady perturbation b of the imposed magnetic field B0 were solved. A sufficiently
strong magnetic field was found to suppress turbulent fluctuations in its direction and
cause the development of anisotropy in an initially isotropic flow. The modes with the
wavenumber vectors perpendicular to B0 accumulate most of the flow energy. It was
also shown that the anisotropy is more pronounced at small scales, which is, clearly,
in correspondence with above assumption of applicability of our results at such scales.
The qualitative similarity of the statistical properties of the velocity field between the
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work of Oughton et al. (1994) and the present study is especially surprising in view of
the fact that the former simulations have been carried out for large magnetic Reynolds
number and magnetic Prandtl number Pm = 1, whereas ours is for Rem � 1 and
Pm � 1.
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for interesting discussions and useful comments. This work was supported by the
Deutsche Forschungsgemeinschaft under Grant INK 18/A1-1 (Innovationskolleg
Magnetofluiddynamik). The computations have been performed at the CRAY-M94
and CRAY-T90 at the Höchstleistungsrechenzentrum Jülich, Germany.

Appendix. Linear and energy stability analysis of two-dimensional cellular
flow

We perform stability analysis of the two-dimensional flow

V =

 b sin y
a sin x
c cos x− bc/a cos y,

(A 1)

where a, b, and c are arbitrary constants satisfying

a2 + b2 + c2(1 + b2/a2) = 4E0. (A 2)

The flow is an exact solution of the Navier–Stokes and incompressibility equations
(2.1), (2.2) with forcing. Being independent of the coordinate z in the direction of
the magnetic field the flow is not affected by the Joule dissipation. Arbitrary three-
dimensional perturbations u, p satisfying the incompressibility condition are imposed
on the basic flow (A 1). We suppose that the perturbations are spatially periodic with
the period 2π in each direction. It is supposed also that the energy supplied by forcing
is consumed fully by the process of maintaining the basic flow. Therefore, the forcing
term does not appear in the following perturbation equations:

∂

∂t
u+ (u · ∇)V + (V · ∇)u+ (u · ∇)u = −1

ρ
∇p+ ν∆u− τ−1

J ∆−1 ∂
2u

∂z2
, (A 3)

∇ · u = 0, (A 4)

where τ−1
J = σB2

0/ρ is reciprocal Joule time.
As a first step we perform a linear stability analysis, i.e. term (u · ∇)u is neglected

in (A 3). We consider the case of a one-dimensional basic flow with b = 0. It will be
shown that in this case all periodic solutions of linearized equations decay at any ν
and τJ . The equations (A 3), (A 4) transform into

∂u

∂t
+ a sin x

∂u

∂y
+ c cos x

∂u

∂z
= −1

ρ

∂p

∂x
+ ν∆u− τ−1

J ∆−1 ∂
2u

∂z2
,

∂v

∂t
+ a cos xu+ a sin x

∂v

∂y
+ c cos x

∂v

∂z
= −1

ρ

∂p

∂y
+ ν∆v − τ−1

J ∆−1 ∂
2v

∂z2
,

∂w

∂t
− c sin xu+ a sin x

∂w

∂y
+ c cos x

∂w

∂z
= −1

ρ

∂p

∂z
+ ν∆w − τ−1

J ∆−1 ∂
2w

∂z2
,


(A 5)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (A 6)
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where u = (u, v, w). The system coefficients depend now on x only. Taking into account
the periodic boundary conditions we can use the Fourier expansion

(u, v, w, p)(x, y, z, t) = eσt+i(my+nz)

∞∑
l=−∞

(ul, vl , wl , pl)e
ilx, (A 7)

where m and n are arbitrary integer wavenumbers and σ is the complex growth rate.
After substituting (A 7) into (A 5) and taking the divergence we obtain the expression
for pressure coefficients

pl =
ρ

k2
[ul−1(ima− cn) + ul+1(ima+ cn)], (A 8)

where k2 = l2 +m2 + n2. Using (A 8) the first equation in (A 5) can be reduced to the
equation for the u-component only. After simple transformations one obtains

(α2 + l2)

[
σ + ν(α2 + l2) + τ−1

J

n2

α2 + l2

]
ul +

am+ icn

2
[α2 − 1 + (l − 1)2]ul−1

−am− icn

2
[α2 − 1 + (l + 1)2]ul+1 = 0, (A 9)

where α2 = n2 + m2.
Now we introduce new variables sl such that

ul = Qeilφsl ,

where Q and φ are the amplitude and the phase of the complex constant (am+icn)/2.
For sl we can write the final equation

Q−1(α2 + l2)[σ + ν(α2 + l2) + τ−1
J

n2

α2 + l2
]sl

+[α2 − 1 + (l − 1)2]sl−1 − [α2 − 1 + (l + 1)2]sl+1 = 0. (A 10)

Equation (A 10) is similar to equation (1.4) in Meshalkin & Sinai (1961). The only
differences are that the positive constant coefficient Q−1 has a different expression
and the additional magnetic dissipation term τ−1

J n
2/(α2 + l2) appears in our case.

Meshalkin & Sinai have found that at α > 1 real part of the growth rate σ is always
negative, that is, the basic flow is unconditionally stable. From their solution one
can see that the value of Q−1 does not affect this conclusion. It is also clear that
the magnetic dissipation term cannot cause any instability. Therefore, the result of
Meshalkin & Sinai is valid for equation (A 10) also. Three-dimensional perturbations
have α >

√
2. Therefore, we can state that basic solution (A 1) with b = 0 is linearly

stable at any ν and τJ to any three-dimensional perturbations having 2π-periodicity
in each direction.

The linear analysis above has shown that between the basic solutions (A 1) there are
unconditionally stable ones. In an attempt to obtain more comprehensive information
we solve below the energy stability problem. Once again, periodic three-dimensional
perturbations are considered but now we look for the conditions for an arbitrary
finite-amplitude solution of (A 3), (A 4) to decay. The usual energy stability method
is applied (see e.g. Straughan 1992). Energy stability equations can be given as

νE∆u− τ−1
J ∆−1 ∂

2u

∂z2
− D · u = −∇π, (A 11)

∇ · u = 0, (A 12)
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Figure 23. Contours of energy stability limit νE of the square periodic flow (A 1) as a function of
constants a and b at τ−1

J = 4.0.

where

Dij =
1

2

(
∂Vi

∂xj
+
∂Vj

∂xi

)
is the symmetric part of the gradient tensor of the basic velocity field and π(x) is a
Lagrange multiplier. The variational derivation of (A 11), (A 12) is the same as that
for the Navier–Stokes system (Straughan 1992). The only difference is that magnetic
dissipation leading to the extra term in (A 11) should be taken into account.

The energy stability limit νE is defined as an eigenvalue of the problem consisting
of (A 11), (A 12) and periodic boundary conditions. The meaning of this limit is that,
at ν > νE , the total energy E(t) = 1

2
〈u2 + v2 + w2〉 of an arbitrary perturbation to the

basic flow (A 1) decays exponentially with time.
We solve the eigenvalue problem numerically using the Fourier expansion

(u, v, w, π)(x, y, z) = einz

M∑
l,m=−M

(ulm, vlm, wlm, πlm)ei(lx+my), (A 13)

where M is the numerical resolution and the vertical wavenumber n can take an
arbitrary integer value. After substituting (A 13) into (A 11), (A 12) and performing
simple transformations one obtains an algebraic eigenvalue problem for a matrix of
the order 3(2M+1)2. This problem is solved numerically for different n and basic flow
parameters a, b, and c. Since the stability to arbitrary perturbation is tested, critical
νE must be minimized over n. We considered only three-dimensional perturbations
with n 6= 0 and have found that the modes with n = 1 are always most dangerous.
The stability limit νE must be also maximized over a, b, and c to find the most stable
configuration of the basic flow. Symmetry properties of the problem allow the region
(A 2) of parameters under consideration to be reduced to:

0 6 a 6 2E
1/2
0 , 0 6 b 6 min[a; (4E0 − a2)1/2], c =

(
4E0 − a2 − b2

1 + b2/a2

)1/2

.

As an example of calculations, contours of constant νE on the (a, b)-plane are
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shown in figure 23 for the case τ−1
J = 4. The computations are performed with the

resolution M = 5. One can see the dependence of νE on the basic flow configuration.
It was found that at τ−1

J < 0.5 the most stable basic flow has U = V = 0 and
W = (2E0)

1/2(cos x+ cos y).

At τ−1
J > 0.5 the most stable configuration is with b = 0. This provides the

possibility of solving the eigenvalue problem (A 11), (A 12) much more accurately.
The coefficients of the equations depend only on x in this case and one-dimensional
Fourier expansion can be used instead of (A 13).
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